

Critérios de Avaliação

1. Avaliações:

B1 - peso 4- 1º bimestre:

- 3 pontos (laboratório, participação e listas) ATPS
- 7 pontos (avaliação prevista para 27/09/2016).

B2 - peso 6 - 29 bimestre:

- 3 pontos (laboratórios, projeto e listas) ATPS
- 7 pontos (avaliação confirmada para 29/11/2016).

SUB – toda a matéria- substitui a menor nota - peso 6:

- 10 pontos (avaliação prevista para 13/12/2016).
- ***Datas de acordo com calendário acadêmico!!!

Desafio Nota Máxima

Disciplinas vinculadas:

Para o curso de Mecânica, 7º e 8º sem: **KEXT4161 Robótica** - Prof Marcos Henrique Gomes

Para o curso de Produção, 8º sem: KEXT4155 Instrumentação Eletroeletrônica - Prof

Cristiano Tavares Malheiro

Como a plataforma estava fechada até esta semana, pois apresentava problemas, peço aos senhores, agora que a mesma se normalizou, que acessem o link passado e realizem o quanto antes o SIMULADO DIAGNÓSTICO. É importante, para a composição da nota final de Robótica e também para o aproveitamento do processo com vistas ao ENADE.

Grato pela atenção de todos.

kroton

Aula 9- Lab.4

Entrega da atividade e reposição:

Abrir o arquivo word (LAB4) na área de Instrumentação Eletroeletrônica do BLOG, confeccionar as etapas a serem solicitadas. Ao final das tarefas, envie o documento word com a prática realizada no seguinte e-mail:

- cmalheiro@aedu.com
- Assunto: LAB4- Instrumentação- NOME- RA- ENG. ____
- Após o envio confirmar o recebimento com o professor! Atividades serão aceitas apenas com a presença do aluno e datadas com o dia da prática!

kroton[⊀]

1. INSERINDO DADOS DO DECIBELÍMETRO E LUXÍMETRO NO MATLAB

2. REPOSIÇÃO LAB 2

Aula 9- Lab.4

Prática: DECIBELÍMETRO: Inserir a relação para cálculo do Leq do exemplo abaixo no MATLAB:

$$Leq = 10 * log \frac{1}{n} (\sum_{i=1}^{n} 10^{\frac{Li}{10}})$$

>> Li=[52 53 67 88 72 80 82 68 69 59 62 65]

Li =

52 53 67 88 72 80 82 68 69 59 62 65

>> n=12

n =

12

kroton kroton

Prática: DECÍBELIMETRO- Inserir a relação para cálculo do Leq do exemplo abaixo:

```
>> y=sum(10.^(Li/10))
y =
9.3046e+08
>> Leq=10*log10(y/n)
Leq =
78.8952
```


kroton

Aula 9- Lab.4

Prática: DECÍBELIMETRO – Inserir o valor medido do laboratório referente ao seu grupo de trabalho-Consultar excel com valores do grupo!

```
>> y=sum(10.^(Li/10))
y =

9.3046e+08

>> Leq=10*log10(y/n)

Leq =

78.8952

A aula de O1/11 serã no laboratório 6 - térreo e reposição do dia 11/10!

Valores medidos no laboratório

Aula_9-01nov
```


Prática: EXERCÍCIO 1 : Insira 15 valores aleatoriamente entre 50 e 80 dB e calcule o Leq. Dica:
Insira o comando: Li= 100*rand(1, 15)

kroton

Aula 9- Lab.4

Prática: LUXÍMETRO- Cálculo da Iluminância média no MATLAB e no Excel.

Inserir os valores de p, q, r e t.

Calcular a média (P, Q, R e T)

р	q	r	t	Média
p1=	q1=	r1=	t1=	P=
p2=	q2=	r2=	t2=	Q=
		r3=	t3=	R=
		r4=	t4=	T=
MATLAB Excel 2016				

Prática: LUXÍMETRO- Cálculo da Iluminância média no MATLAB e no Excel.

Utilizar a relação:

Iluminancia Média: [R.N(M-1)+ Q.N+T(M-1)+P]/[M(N+1)]

$$E_{m\acute{e}dio} = \frac{R.N.(M-1) + Q.N + T.(M-1)}{M.(N+1)}$$

Considere: M=26 e N=4

11

Aula 9- Lab.4

Prática: LUXÍMETRO- Exemplo: Cálculo da Iluminância média no MATLAB.

```
>> r=[200 400 600 200];

>> t=[300 200 400 230];

>> p=[100 300];

>> q=[260 530];

>> R=mean(r)

R =

350

>> T=mean(t);

>> P=mean(p);
```

>> Q=mean(q);

kroton kroton

Prática: LUXÍMETRO- Exemplo: Cálculo da Iluminância média no MATLAB.

```
>> M=26
M =
26
>> N=4
N =
4
>> Em=[R*N*(M-1)+Q*N+T*(M-1)]/[M*(N+1)]
Em =
335.7115
```


kroton^k

13

Aula 9- Lab.4

REPOSIÇÃO DO LAB 2

NOÇÕES DE ESTATÍSTICA, DISTRIBUIÇÕES E GRÁFICOS DE DISPERSÃO NO MATLAB

Objetivos

- Introduzir algumas ferramentas básicas de Análise Estatística:
 - Permitem visualizar e compreender características de dados experimentais e realizar formas simples de inferência.
- Familiarizar o aluno com o uso da ferramenta para automatizar tarefas de análise estatística, que seria por demais tediosas ou (difíceis) de se realizar manualmente.
- A objetivo desta aula NÃO é esgotar o assunto da análise estatística de dados

krote

Aula 9- Lab.4

Estatística

- Conjunto de técnicas que permite de forma sistemática as seguintes operações sobre dados:
 - Organizar
 - Descrever
 - Analisar
 - Interpretar

Análise estatística: exemplos

■ Estatística Descritiva:

- O número de acidentes (= frequência) nas rodovias federais no estado de São Paulo antes e depois da Lei Seca:
- Gráfico com a distribuição da idade dos ingressantes nos Cursos de Engenharia da UNIAN

Estatística Indutiva/Inferencial:

- Estimação da porcentagem da população que votará para um/a determinado/a candidato/a à presidência, junto com uma margem de erro ("intervalo de confiança");
- Teste estatístico de tendência de queda nas populações de atum-rabilho entre 2000 e 2010, a partir de observações sistemáticas

Aula 9- Lab.4

Variáveis

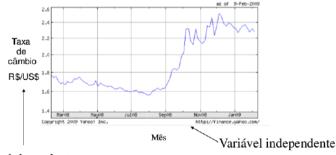
- Medição de certas características de interesse para cada um dos casos presentes na amostra.
- As características medidas são conhecidas como variáveis. Por exemplo:
 - Estudo sobre habitantes de uma cidade, as variáveis podem ser:
 Altura, sexo, cor do cabelo, cor dos olhos, etc
- Divididas em dois tipos:
 - Independente
 - Dependente

Tipos de variáveis

Independente:

- Valores manipulados ou selecionados pelo pesquisador (meio, idade, mês).
- Podem ser ou não a "causa" da variável dependente.

Dependente:


- Valores observados, contados, medidos, ... que n\(\tilde{a}\) o estejam sob controle direto do pesquisador (velocidade, taxa de c\(\tilde{a}\)mbio).
- Podem ser "causadas" ou não pela variável independente.

krot

Tipos de variáveis

- Quando não há relação causal óbvia entre duas ou mais variáveis, qual é 'independente ' ou 'dependente' é uma questão de rótulo.
- A variável 'dependente' é esta que analisamos em função dos valores de uma outra variável.

Variável dependente

۱ 🕷

Variáveis discretas e contínuas

- Variáveis quantitativas:
 - expressas em valores numéricos ↔ (quantitativas)
- Discretas ou qualitativas: Conjunto enumerável de valores
 - Nominais = categóricas sem ordem natural de valores: {presente, ausente}, {homem, mulher}, estado de origem (UF), base DNA A/C/T/G.
 - Ordinais

com ordem natural de valores: Classe sócio-econômica (A-E ou "baixa", "média", "alta"), avaliação em escala *Likert* (nota 1-5), {PP, P, M, G, GG}, número de acidentes.

concorda fortemente	concorda	Neutral	Discorda	Discorda fortemente
	-	-	-	
1	2	3	4	5

Aula 9- Lab.4

Variáveis discretas e contínuas

Contínuas:

Conjunto não-enumerável, valores reais, não discretizados

Grandezas físicas ou químicas:
 Velocidade, força, probabilidade, concentração, acidez, taxa de câmbio.

Medidas de tendência central

kroton

Aula 9- Lab.4

Medidas de tendência central

- É conveniente dispor de medidas que informem sobre a amostra de maneira mais resumida do que os dados brutos são capazes de fazer.
- As medidas de tendência central cumprem este papel, dando o valor do ponto em torno do qual os dados se distribuem:

Valor 'médio' ou 'típico' de um conjunto de dados.

- Por exemplo, são medidas de tendência central:
 - Média
 - Mediana
 - Moda

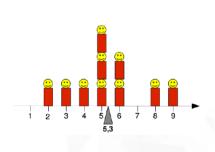
Média aritmética

É o 'centro de gravidade' dos dados. Soma de um conjunto de valores dividida pelo número de valores do conjunto:

$$\overline{X} = \frac{\sum_{i=1}^{N} X_i}{N}$$

N é o número total de observações

 \boldsymbol{X}_i é um valor do conjunto


kroton

Aula 9- Lab.4

Média aritmética

10 Total	5,0 53
9	2,0
8	6,0
7	9,0
6	8,0
5	5,0
4	4,0
3	6,0
2	3,0 5,0
Alunos (i)	Notas (x)

Prática: Matlab- Média

-->x = 1:1:15 x =

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.

--> M=mean(x)

ans =

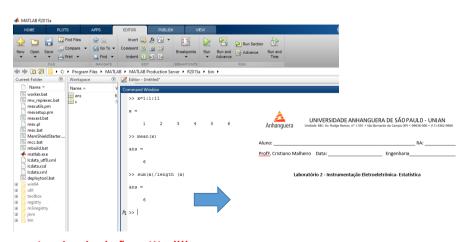
8.

-->sum(x)/length(x)

ans =

8.

Inserir a simulação no Word!!!



Aula 9- Lab.4

Prática: Matlab

Inserir a simulação no Word!!!

Prática: Matlab- Média

-->x = rand(1,10); --> M=mean(x) ans = 0.4175271 -->x = rand(1,1000000); --> M=mean(x) ans = 0.4996488

Inserir a simulação no Word!!!

k

Aula 9- Lab.4

Mediana

| Notas (x) | |
|-----------|-------------------------------------|
| 3,0 | 3;5;6;4;5;8;9;6;2;7;5 |
| 5,0 | 1) |
| 6,0 | Escores ordenados: |
| 4,0 | 2;3;4;5;5;5;6;6;7; 8; 9
Posição: |
| 5,0 | 1;2;3;4;5;6;7;8;9;10;11 |
| 8,0 | 2) |
| 9,0 | i = (11 + 1)/2 = 6 |
| 6,0 | → Meio = Sexta posição |
| 2,0 | → Nota 5 |
| 7,0 | 2;3;4;5;5; 5 ;6;6;7;8;9 |
| 5,0 | |

Prática: Matlab- Mediana

-->x = [3, 5, 6, 4, 5, 8, 9, 6, 2, 7, 5] x =

3. 5. 6. 4. 5. 8. 9. 6. 2. 7. 5.

MATLAB

31

-->median(x)
ans =

....

5.

--> sort(x)

ans = 2 3 4 5 5 5 6 6 7 8 9

Inserir a simulação no Word!!!

Aula 9- Lab.4

Prática: Matlab- Mediana

-->x = [3, 5, 6, 4, 5, 8, 9, 6, 2, 7, 5,100] x =

3. 5. 6. 4. 5. 8. 9. 6. 2. 7. 5. 100.

--> sort(x)

ans =

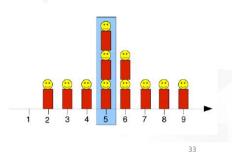
-->median(x)

ans =

5.5

No caso de um número par de sujeitos a mediana é a média entre os dois valores centrais.

Inserir a simulação no Word!!!

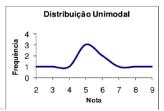


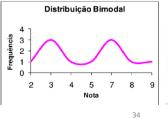
Moda

• É a categoria que ocorre com maior frequência.

| Sujeitos | Notas |
|----------|-------|
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 3 |
| 6 | 2 |
| 7 | 1 |
| 8 | 1 |
| 9 | 1 |

Aula 9- Lab.4

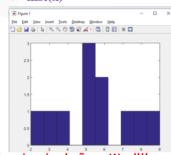

Moda


A moda pode não existir OU pode não ser única.

Exemplos:

1,1,3,3,5,7,7,7,11,13 → moda 7 3,5,8,11,13,18 → não tem moda 3,5,5,5,6,6,7,7,7,11,12 → tem duas modas: 5,7 (bimodal).

| Sujeitos | Notas |
|----------|-------|
| | |
| 2 | 1 |
| 3 | 3 |
| 4 | 1 |
| 5 | 1 |
| 7 | 3 |
| 8 | 1 |
| 9 | 1 |



Prática: Matlab- Histograma

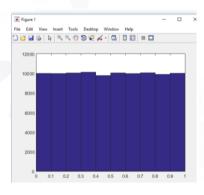
-->x = [3, 5, 6, 4, 5, 8, 9, 6, 2, 7, 5] x =

3. 5. 6. 4. 5. 8. 9. 6. 2. 7. 5.

--> **hist(x)**

Inserir a simulação no Word!!!

kroton



Aula 9- Lab.4

Prática: Matlab- Histograma

--> x = rand(1,1000000);

-->|hist(x)

MATLAB

Inserir a simulação no Word!!!

Medidas de dispersão

Aula 9- Lab.4

Medidas de dispersão

- O processo de trabalhar com amostras introduz uma variabilidade dos resultados obtidos, pois cada amostra vai ter características ligeiramente diferentes
- Essa variabilidade afeta nosso grau de confiança nos resultados. Por isso, as medidas de variabilidade (ou dispersão) têm papel central na Estatística.
- Dentre as medidas de dispersão tem-se:
 - Variância
 - Desvio-padrão

kroton kroton

Variância

 É a 'Média' dos quadrados dos desvios, onde desvio é a diferença entre cada dado e a média do conjunto.

| Dados | Desvios | Quadrados dos Desvios | |
|--------------------|-------------------------------|----------------------------------|--|
| (X) | $(X-\overline{X})$ | $(X-\overline{X})^2$ | |
| 0 | -5 | 25 | |
| 4 | -1 | 1 | |
| 6 | 1 | 1 | |
| 8 | 3 | 9 | |
| 7 | 2 | 4 | |
| $\overline{X} = 5$ | $\sum (X - \overline{X}) = 0$ | $\sum (X - \overline{X})^2 = 40$ | |

$$s^2 = \frac{\sum (X - \overline{X})^2}{N - 1} = 40 / 4 = 10$$

9

Aula 9- Lab.4

Desvio padrão

Raiz quadrada da variância

$$s = \sqrt{s^2} = \sqrt{\frac{\sum (X - \overline{X})^2}{N - 1}} = \sqrt{10} = 3,16$$

| Alunos | Turma A | Turma B |
|--------|---------|---------|
| 1 | 5 | 8 |
| 2 | 5 | 9 |
| 3 | 5 | 7 |
| 4 | 5 | 7 |
| 5 | 5 | 2 |
| 6 | 6 | 5 |
| 7 | 4 | 2 |
| 8 | 6 | 0 |
| 9 | 5 | 2 |
| 10 | 5 | 10 |
| Total | 51 | 52 |
| Média | 5,1 | 5,2 |
| DVP | 0,57 | 3,49 |

Prática: Matlab- Variância e Desvio Padrão

0. 4. 6. 8. 7.

-->var (x)

ans =

10.

-->std (x)

ans =

3.1622777

Inserir a simulação no Word!!!

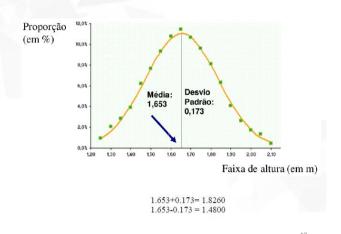
Aula 9- Lab.4

Distribuição

Para obter uma estimativa da altura média do brasileiro adulto:

- Amostragem com 5000 pessoas (n=5000)
- Estratificação adequada, que reflita os dados de toda a população do país

À direita: Resultados (intervalo) por faixa de altura.


Nota: 'discretizamos' uma variável contínua (altura) em faixas para poder visualizar a distribuição.

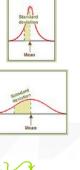
| Intervalo
Mínimo Máximo | | Valores ob
Absoluto | servados
Porcentagem |
|----------------------------|------|------------------------|-------------------------|
| - | 1,30 | 47 | 0,9% |
| 1,30 | 1,35 | 102 | 2,0% |
| 1,35 | 1,40 | 142 | 2,8% |
| 1,40 | 1,45 | 196 | 3,9% |
| 1,45 | 1,50 | 311 | 6,2% |
| 1,50 | 1,55 | 383 | 7,7% |
| 1,55 | 1,60 | 465 | 9,3% |
| 1,60 | 1,65 | 540 | 10,8% |
| 1,65 | 1,70 | 571 | 11,4% |
| 1,70 | 1,75 | 532 | 10,6% |
| 1,75 | 1,80 | 480 | 9,6% |
| 1,80 | 1,85 | 406 | 8,1% |
| 1,85 | 1,90 | 314 | 6,3% |
| 1,90 | 1,95 | 205 | 4,1% |
| 1,95 | 2,00 | 131 | 2,6% |
| 2,00 | 2,05 | 86 | 1,7% |
| 2,05 | 2,10 | 68 | 1,4% |
| 2,10 | + | 21 | 0,4% |
| | | 5000 | 100,0% |

Distribuição normal (=Gaussiana)

kroton^K

Aula 9- Lab.4

Características da distribuição normal

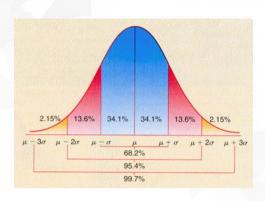

Determinada por dois parâmetros

- Média (valor central)
- Desvio padrão (largura)

A distribuição é **simétrica** e **unimodal**.

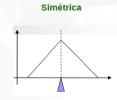
Por causa da simetria, valores de média, mediana e moda são iguais.

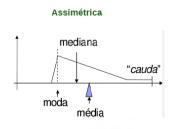
A área total sob a curva é igual a 100%, com exatos 50% distribuídos à esquerda da média e 50% à sua direita.



Áreas sob a curva normal

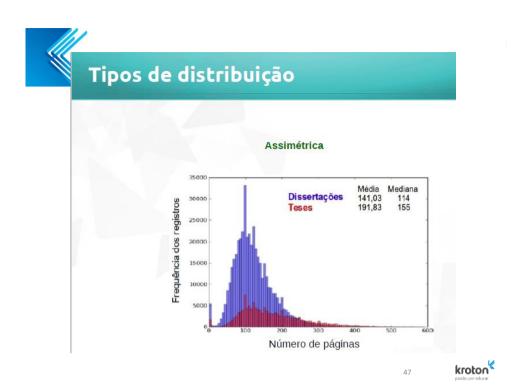
As proporções são constantes em uma distribuição normal; sabendo a média e o desvio-padrão, dá para fazer estimativas da porcentagem em um intervalo.


45



Aula 9- Lab.4

Tipos de distribuição



A medida de tendência central mais usada em:

- Distribuição simétrica: média
- Distribuição assimétrica: mediana ou moda
- Distribuição bimodal: modas

kroton[⊀]

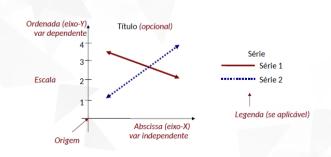
Representação gráfica das informações

Gráficos

- Tem por finalidade representar os resultados obtidos.
- Permite chegar a conclusões sobre a evolução do fenômeno ou sobre como se relacionam os valores.
- Não há uma única maneira de representar graficamente uma série estatística.
- Escolha do gráfico mais apropriado fica a critério do analista.

Alguns critérios:

- Simplicidade
- Clareza
- Veracidade


kroton

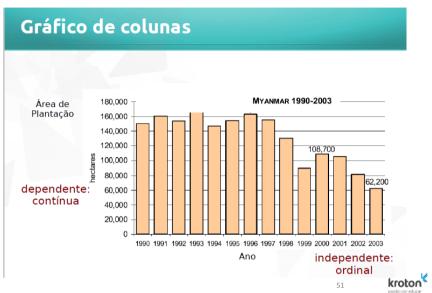
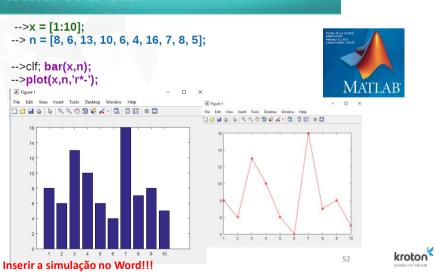

Aula 9- Lab.4

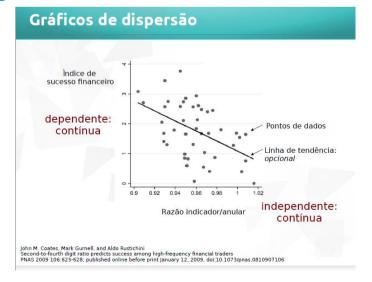
Gráfico: estrutura


Aula 9- Lab.4

Prática: Matlab- Gráfico de Colunas

Gráfico de colunas

Gráfico em linhas


Compare: Gráfico de <u>linhas</u> destaca <u>evolução</u> Gráfico de <u>colunas</u> destaca <u>níveis absolutos</u>

Fonte: Goddard Institute for Space Studies - http://data.giss.nasa.gov/gistemp/

Aula 9- Lab.4

kroton kroton

Gráficos de dispersão

Prática: Matlab- Variância e Desvio Padrão

-->mes = [1,2,3,4,5] mes =

2. 3. 4. 5.

-->gasto = [300,430,700, 1200, 2300] gasto =

300. 430. 700. 1200. 2300.

-->plot(mes, gasto, 'bo')

Inserir a simulação no Word!!!

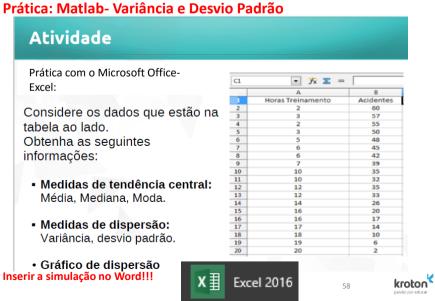
55

Aula 9- Lab.4

Prática: Matlab- Variância e Desvio Padrão

Prática: Matlab- Variância e Desvio Padrão

Gráficos de dispersão -->v1 = rand(1,1000); -->v2 = ceil(rand(1,1000)*4+6); -->plot (v1, v2, 'b*') File Edit View Insert Tools Desktop Window Help



Inserir a simulação no Word!!!

kroton

Aula 9- Lab.4

Atividade

| Função Estatística | Comando no LibreOffice Calc |
|--------------------|-----------------------------|
| Média Aritmética | MEDIA() |
| Mediana | MED() |
| Moda | MODO() |
| Variância | VAR() |
| Desvio Padrão | DESVPAD() |
| Máximo | MAXIMO |
| Mínimo | MINIMO |

kroton

Aula 9- Lab.4

Prática: Matlab- Variância e Desvio Padrão

Atividade

Inserir a simulação no Word!!!

kroton kroton

