
Horário de Aulas - 5º semestre

	DISCIPLINA	S	eç	jui	nd	a -		T	erç	a	~		Qı	ıaı	ta	~	Qı	uin	ıta	~		S	ex	ta
Cálculo Numérico)							1	1															
Circuitos Elétrico	S		1	1	1																			
Controle e Autom	nação de Processos Industriais																			1				
ED 05 Exatas													Χ	Χ										
Física Geral e Experimental: Energia																	1	1	1					
Resistência dos Materiais						1																		
Resistência dos Materiais										1	1													
	PROFESSOR		¥	Т	ΙŢΨ																			
1	 Cristiano Tavares Malheiro Cristiano Tavares Malheiro 			M																				
2				ı	M		NOTURNO:						0 1				18:20 - 19:10 h (pré-aula) 19:10 - 20:00 h							

kroton^k

Aula 1
Blog da disciplina - http://cristianotm.wix.com/aulas

Aula 1 Blog da disciplina - http://cristianotm.wix.com/aulas

UNIAN- Universidade Anhanguera de São Paulo- 1º sem. /2017

UNIAN- Universidade Anhanguera de São Paulo- 1º sem. /2017

Circuitos Elétricos I

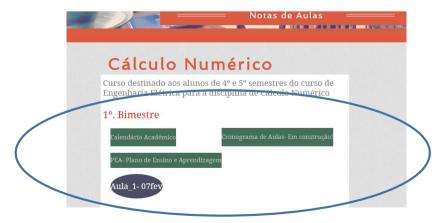
Cálculo Numérico

Projetos de Engenharia

Calendário Acadêmico 1º sem./ 2017

Siga Lendo

Aula 1 Blog da disciplina - http://cristianotm.wix.com/aulas



kroton

Aula 1

Blog da disciplina - http://cristianotm.wix.com/aulas

Apresentação do PEA

Aulas BLENDED (combinado):

- Resumos e exercícios em sala de aula com foco no que é disponibilizado no ambiente virtual.

kroton

Aula 1

Apresentação do PEA

Aulas BLENDED (combinado):

- Sistemas de Numeração e Erros;
- Métodos Exatos;
- Métodos de Quebra
- Interpolação;
- Integração Numérica

Objetivo da disciplina

 Proporcionar aos alunos uma formação básica nas técnicas elementares de cálculo numérico; fornecendolhes condições para que possam conhecer, calcular, utilizar e aplicar métodos numéricos na solução de problemas de engenharia.

Aula 1

Critérios de Avaliação

1. Avaliações (ambiente online):

B1 – peso 4- 1º bimestre:

• 10 pontos (avaliações e atividades das unidades 1 e 2- online)

B2 – peso $6 – 2^{\circ}$ bimestre:

- 3 pontos (Presencial: Listas de Exercícios- aula/ casa)
- 7 pontos (Avaliação Oficial Presencial 30/05/2017***).

SUB – toda a matéria (até o momento- online):

- 10 pontos (avaliação prevista para 19/06/2017***).
- ***Aguardando a elaboração!!!

Critérios de Avaliação

Quadro 1: Composição da Nota da Disciplina

	Bimestre	Atividade	Peso no Bimestre	Peso no Semestre			
	B1	Todas as atividades e avaliações das uni- dades 1 e 2	100%	40%			
Nota	B2 .	Avaliação Oficial Presencial	70%	60%			
	B2	Nota do professor para atividades práticas	30%	60%			

Fonte: Dados institucionais

Quadro 2: Composição da Frequência da Disciplina

	A frequência da DI Blended será calculada com base nos encontros. Os
Frequência	discentes que não obtiverem frequência mínima de 75% (setenta e cinco por
-	cento) serão considerados reprovados na disciplina.

Fonte: Dados institucionais

11

Aula 1

Critérios de Avaliação

As notas obtidas nas atividades e avaliações de primeiro e segundo bimestre compõem a média aritmética para o semestre. Você será considerado aprovado na disciplina caso obtenha média igual ou superior à mínima estabelecida no Regimento Geral da IES.

Média da disciplina = (nota do 1º Bim x 0,40) + (nota do 2º Bim x 0,60)

A aprovação na Disciplina Interativa Blended exige, além do rendimento, a integralização de no mínimo 75% (setenta e cinco por cento) da carga horária da disciplina, de acordo com o quadro apresentado anteriormente.

Você poderá apresentar recurso contra avaliações, questões, atividades, notas e/ou gabaritos. Esse pode ser feito, desde que devidamente fundamentado, no prazo de 2 (dois) dias úteis contados da data da divulgação oficial da respectiva nota.

Todos os recursos serão protocolados na Secretaria Acadêmica de sua unidade, devendo constar, sob pena de não encaminhamento e/ou indeferimento: o nome da IES, Unidade, Cidade, seu nome completo, curso e turma, indicação da atividade/ disciplina em realização, objeto de pedido de revisão (nota ou conteúdo) com exposição detalhada e fundamentada das razões que os motivaram.

Critérios de Avaliação

Professor

É responsável por aplicar a carga horária prática da disciplina, tendo como principais atribuições:

- Conhecer todo o material didático da disciplina, visando à compreensão da proposta, conteúdos e competências planejadas;
- Atuar coerentemente com o material didático institucional da disciplina, uma vez que todo o conteúdo teórico será desenvolvido via AVA;
- Aplicar as práticas conforme os roteiros de aulas práticas (RAPs) fornecidos institucionalmente;
- Garantir plena interação dos componentes práticos e teóricos e um percurso de aprendizagem adequado ao aluno;
- Avaliar e conceituar as atividades, oferecendo ao aluno o devido retorno sobre seu desempenho;
- Realizar os agendamentos necessários às práticas e comunicar os alunos sobre o cronograma específico.

13

Aula 1

Bibliografia Básica Padrão (Provisório)

1. FRANCO, Neide M.B. **Cálculo Numérico: 1**^a edição. São Paulo: Pearson-Prentice Hall, 2007.

Na nossa biblioteca: 3 exemplares - 517.2 F894c

Representação dos números, aritmética de ponto flutuante e erros em máquinas digitais

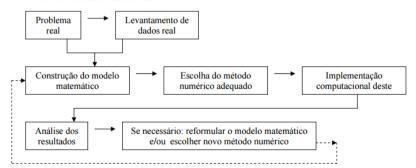
Objetivos: Alertar o aluno sobre as dificuldades numéricas que podem ocorrer ao se trabalhar com um computador (ou qualquer outra maquina digital); Erros inerentes ao processo de tradução de números decimais para números binários.

1 – O processo de modelagem de um fenômeno da natureza.

Modelagem – Fase de obtenção de um modelo matemático que descreve o comportamento do problema que se quer estudar.

Resolução – Fase de obtenção da solução do modelo matemático através da aplicação de métodos numéricos.

Obs: Ambas as fases acima estao passíveis de erros.


15 kroton

Aula 1

Representação dos números, aritmética de ponto flutuante e erros em máquinas digitais

De forma mais detalhada temos:

Representação dos números, aritmética de ponto flutuante e erros em máquinas digitais

Não é raro acontecer que os resultados finais estejam distantes do que se esperaria obter, ainda que todas as fases de resolução tenham sido realizadas corretamente. Os resultados obtidos dependem também:

- a) da precisão dos dados de entrada
- b) da forma como esses dados são representados no computador
- c) das operações numéricas efetuadas

17

Aula 1

Representação dos números, aritmética de ponto flutuante e erros em máquinas digitais

2 - Representação dos números.

Os números empregados no calculo computacional podem ser de dois tipos: números inteiros e números em "ponto flutuante" (números reais da matemática, por exemplo $3.56 \rightarrow 0.356 \times 10^{-1}$). Os computadores atuais representam os números internamente no formato binário, como uma seqüência de 0s e 1s. Apesar dessa representação ser conveniente para as maquinas é antinatural para os seres humanos, cujo sistema de numeração é o decimal.

Obs. No passado o nosso sistema de numeração já foi também na base 12 (ex. contar nas falanges dos dedos) na base 60 (ex. sistema horário).

2.1 - Decomposição de um número num sistema de bases.

Em gera \hat{l} qualquer numero pode ser decomposto numa soma dos dígitos que o constitui (d) vezes potências da sua base (β) conforme indicado abaixo:

$$\begin{split} &\text{Atencão!}\\ &(N)_B = (d_n d_{n-1} d_{n-2} \dots d_0, d_{-1} d_{-2} \dots \ d_{-m})_\beta \\ &= d_n \beta^n + d_{n-1} \beta^{n-1} + d_{n-2} \beta^{n-2} + \dots + d_0 \beta^0 + d_{-1} \beta^{-1} + d_{-2} \beta^{-2} + d_{-m} \beta^{-m} \end{split}$$

Onde os dígitos d_i pertencem aos números naturais e satisfazem a condição: $0 \le d_i \le (\beta-1)$

Representação dos números, aritmética de ponto flutuante e erros em máquinas digitais

2.2 - Sistema de numeração decimal ou base 10.

Nesse caso todos os múltiplos e submúltiplos de um número são escritos com potencias de 10.

$$\begin{array}{l} \mathrm{Ex1.\ 1537} = (1537)_{10} = \frac{1}{1} \times 10^{3} + \frac{5}{5} \times 10^{2} + \frac{3}{3} \times 10^{1} + \frac{7}{7} \times 10^{0} \\ 36,189 = (36,189)_{10} = \frac{3}{3} \times 10^{1} + \frac{6}{6} \times 10^{0} + \frac{1}{1} \times 10^{-1} + \frac{8}{3} \times 10^{-2} + \frac{9}{9} \times 10^{-3} \\ 6,032 \times 10^{23} = (6,032 \times 10^{23})_{10} = \frac{6}{5} \times 10^{23} + \frac{0}{3} \times 10^{22} + \frac{3}{3} \times 10^{21} + \frac{2}{3} \times 10^{21} \end{array}$$

2.3 - Sistema de numeração binário ou base 2.

Nesse caso todos os múltiplos e submúltiplos de um número são escritos com potencias de 2.

Ex2.
$$(10111)_2 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

 $(10,1)_2 = 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1}$

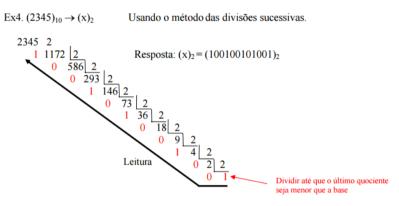
Obs. Os computadores digitais operam basicamente com dois tipos de sinais de tensão: Alto e baixo. Matematicamente, pode-se expressar esses valores por 0 (baixo) e 1 (alto).

Aula 1

Representação dos números, aritmética de ponto flutuante e erros em máquinas digitais

3 - Conversão de números

3.1 - Conversão de números decimal → binário.

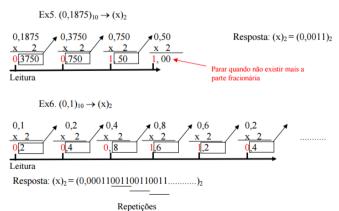

Para convertermos um numero decimal para um numero binário devemos aplicar um método para a parte inteira (divisões sucessivas) e um método para a parte fracionaria, se houver (multiplicações sucessivas).

Portanto, a partir de uma sequência de 0s e de 1s podemos expressar "qualquer" número decimal. Sera?

Representação dos números, aritmética de ponto flutuante e erros em máquinas digitais

Ex4. $(2345)_{10} \rightarrow (x)_2$ Usando o método das divisões sucessivas.

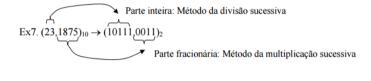
kroton


21

Aula 1

Representação dos números, aritmética de ponto flutuante e erros em máquinas digitais

Para números fracionários utilizamos a regra da multiplicação.



Representação dos números, aritmética de ponto flutuante e erros em máquinas digitais

Nesse caso concluímos que o número $(0,1)_{10}$ NÃO tem representação binária finita !!! \rightarrow Por mais moderno que seja o computador ele nunca vai saber exatamente o que significa o numero $(0,1)_{10}$ pois sua conversão para binário sempre acarretará numa aproximação (truncamento u arredondamento)

Obs. O fato de um número não ter representação finita no sistema binário pode acarretar a ocorrência de erros aparentemente inexplicáveis nos cálculos dos dispositivos eletrônicos.

23 **k**

Aula 1

Representação dos números, aritmética de ponto flutuante e erros em máquinas digitais

3.2 - Conversão de números binário → decimal.

Ex8.
$$(10111)_2 \rightarrow (x)_{10}$$

 $(10111)_2 = \underbrace{1x2^4 + 0x2^3 + 1x2^2 + 1x2^1 + 1x2^0}_{16 + 0 + 4 + 2 + 1} = 23 = (23)_{10}$
 $\underbrace{d_4 \qquad d_0 \qquad d_1}_{d_1}$
Ex9. $(110,11)_2 \rightarrow (x)_{10}$
 $(110,11)_2 = \underbrace{1x2^2 + 1x2^1 + 0x2^0 + 1x2^1 + 1x2^2}_{d_2} = 6,75 = (6,75)_{10}$

kroton[⊀]

Para a próxima aula:

ENTREGA INDIVIDUAL PARA A PRÓXIMA AULA 13/02/2016
Folha almaço, sulfite ou caderno!
Nome, RA e enunciado com respostas!
Leiam o Manual da disciplina BLENDED, lá constam as datas do semestre!

Exercícios:

- 1) converta os números decimais em sua forma binária:
- a) 2 b) 10 c) 7550 d) 13,25 e) 0,4217
- 2) Converta os números binários em sua forma decimal:
- a) $(10100)_2$ b) $(1101)_2$ c) (0)
 - $c)(0,1101)_2$
- d) $(11101,01)_2$
