

Faculdade Anhanguera de SBC

	Lista de Exercícios 1– Transmissão e Recepção de Sinais - Prof ^o . Cristiano Malheiro				
	Aluno: RA:				
	Individual, manuscrita e utilizar folha padrão!!!				
1.	Desenhe o sinal periódico: $v(t) = 20 \text{ sen } 2\pi 2000 \text{ t.}$				
	Resposta: Dica: 20 é a amplitude e 2000 é a frequência!				
2.	Prove que o valor eficaz de uma senóide é: $V_{ef} = \frac{V_{máx}}{\sqrt{2}}$. Se o valor máximo é 15V, quanto será o				
	valor eficaz?				
	Resposta:				
	1ª parte: dedução; 2ª parte Vef=10,61V.				
3.	Prove que o valor eficaz de um sinal onda completa é: $V_{ef} = \frac{V_{máx}}{\sqrt{2}}$. Se o valor máximo é 12V,				
	quanto será o valor eficaz?				
	Resposta:				
	1ª parte: dedução; 2ª parte Vef=8,48V.				
4.	Prove que o valor eficaz de um sinal meia onda é igual a $Vef=Vm\acute{a}x/2$. Resposta: Desenvolver a expressão a partir de:				
	$V_{\rm ef} = \sqrt{\frac{1}{T} \int_{t_0}^{t_2} v(t)^2 dt}$				

5. Prove que o valor médio de uma senóide é 0.

Resposta: Desenvolver a expressão a partir de:

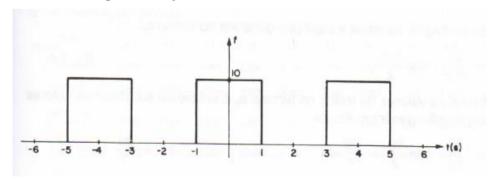
$$V_{med} = \frac{1}{T} \cdot \int\limits_{t_i}^{t_f} v(t).dt$$

6. Ao realizar uma medição em tensão média do sinal meia onda, encontrou-se 15,5V. Quanto vale o valor eficaz desse sinal? Faça um esboço do sinal com os valores de Vmáx, Vef (V_{AC}) e Vméd (V_{DC}).

Lembre-se:
$$V_{DC} = \frac{Vm\acute{a}x}{\pi} e V_{ef} = \frac{Vm\acute{a}x}{2}$$

Resposta: Vmáx=48,69V; Vef=34,43V, Vméd=15,5V.

- 7. Desenhe o sinal periódico: $v(t) = 2 + 0.5 \text{ sen } 2\pi 500 \text{ t} + 90^{\circ}$.
- **8.** Resolva a integral indefinida $\int sen^2\phi d\phi$. Lembrar que:


$$sen^2 + cos^2 = 1$$

$$\cos 2\phi = 2\cos^2 \phi - 1$$

9. Complete o quadro de expressões de tensão média e eficaz.

Medições	Senóide	Meia Onda	Onda completa
			(Senóide com
			semiciclos apenas
			positivos)
Tensão média V _{DC}	0		
Tensão eficaz V _{AC}		<u>Vmáx</u>	
		2	

- **10.** Prove que o valor médio de um sinal meia onda igual a $V_{m\acute{e}d}=\frac{V_{m\acute{a}x}}{\pi}$.
- 11. Prove que o valor médio de um sinal onda completa (semiciclo positivo) é igual a $V_{méd} = \frac{V_{máx}}{2.\pi}$.
- 12. Calcule a série de Fourier para a função abaixo:

Dica: Ver aula 2 no blog!