

Critérios de Avaliação (Avaliação Continuada): para o 1º semestre de 2019!!!

Avaliações:

Prova 1 – 1000 pontos- 1º bimestre:

• Avaliação prevista para 16 ou 23/04/2019). Atividades do Professor 1º Bim.- 1000 pontos

Prova 2 – 4000 pontos – 2º bimestre:

Avaliação confirmada para 11/06/2019).
 Atividades do Professor 2º Bim.- 1500 pontos

Avaliação de 2ª chamada (Substitui a avaliação que perdeu):

Prova 1 + Prova 2 (Avaliação prevista para 18/06/2019).

Média para aprovação ≥ 6000 pontos* (*mínimo de 2500 nas avaliações)

kroton

Critérios de Avaliação (Avaliação Continuada): para o 1º semestre de 2019!!!

1. Avaliações:

Exame Final (vale até 5000 pontos)

• Avaliação prevista para 25/06/2019).

Para ser aprovado: M= (Nota do Exame+ Média de pontos anterior) ≥ 6000* pontos

Detalhamentos a seguir. Total 12000 pontos e 10000 pontos serão convertidos para uma nota de 0 a 10 pontos. Inclui:

- ED e Nivelamento;
- AVA;
- Atividades do Professor;
- Provas.

kroton

3

Aula 2

O modelo será divido em 5 partes com somatória máxima em 14.000 pontos, com cada 1000 pontos sendo convertido para nota 1 na média e com nota máxima igual 10

kroton^K

MAIO / 2019								JUNHO / 2019							
D	s	Т	Q	Q	s	s		D	s	T	Q	Q	s	S	
			1 N	2	3	4								1	
5	6	7	8	9	10	11		2	3	4	5	6	7	8	
12	13	14	15	16	17	18		9	10	11	12	13	14	15	
19	20	21	22	23	24	25		16	17	18	19	20 N	21	22	
26	27	28	29	30	31			23	24	25	26 '	27	28	29	
MAIO							JUNHO								
01 – Dia do Trabalho								01 a 07 – Avaliação Oficial do 2º Bim.							
03 – Prazo limite para lançamento das							(interativa)								
notas do 1º bimestre								10 a 14 – Avaliação Oficial do 2° Bim.							
06 – Avaliação de Proficiência (Ciências								17 – Prazo limite para lançamento das							
Sociais Aplicadas)*								notas do 2º bimestre							
07 – Avaliação de Proficiência (Ciências								17 – 2º Chamada Avaliação de Proficiência							
Exatas, Licenciaturas e Saúde)*								18 e 19 – Avaliação de 2ª chamada (Interativa)							
* Aplicada apenas para cursos definidos								20 – Corpus Christi							
em regulamento								24 e 25 – Avaliação de 2ª chamada							
							26 – Lançamento das notas de Provas								
							26 – Término do Período Letivo								
								27 e 28 – Exame Final							
								29 – Lançamento das notas de Exame Final							
								29 – Fechamento do Semestre							

5

Aula 2

Livro Didático

6

Conteúdo Programático

Unidade 1 Circuitos de corrente contínua	7			
Seção 1.1 - Elementos de circuitos	8			
Seção 1.2 - Circuitos resistivos simples	21			
Seção 1.3 - Circuitos de primeira e segunda ordem	34			
Unidade 2 Circuitos de corrente alternada	51			
Seção 2.1 - Excitação senoidal e fasores	53			
Seção 2.2 - Potência em regime permanente	69			
Seção 2.3 - Circuitos trifásicos	82			
Unidade 3 Transformadores, motores e geradores	101			
Seção 3.1 - Transformadores	103			
Seção 3.2 - Máquinas de corrente alternada	121			
Seção 3.3 - Máquinas de corrente contínua	138			
Unidade 4 Instalações para motores				
Seção 4.1 - Motores elétricos	157			
Seção 4.2 - Projeto de instalação para motores	173			
Seção 4.3 - Proteção	190			
	7			

/

Aula 2

Conteúdo Programático

- Unidade 1: Circuitos em corrente contínua;

Seção 1.2 – Circuitos Resistivos Simples

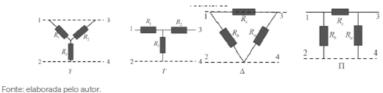
kroton kroton

Introdução:

A análise de circuito utilizando as leis de Kirchhoff não exige alterações na topologia do sistema, de forma que são muito úteis. Porém, se o circuito é complexo, os cálculos tornam-se trabalhosos, sendo um limitante importante na execução de projetos. Os avanços tecnológicos trouxeram justamente essa complexidade para o mundo dos projetistas de circuito elétrico. Neste caso, alterações na topologia do sistema permitem resolver essa complexidade de forma bem mais simples do que por meio das leis de Kirchhoff. Nesta seção, vamos estudar os circuitos resistivos simples, porém, com topologias um pouco mais complexas do que as usuais, em que as leis de Kirchhoff não são diretamente aplicadas. Um exemplo desse tipo de circuito mais complexo é a ponte de Wheatstone, que é muito utilizada para medir resistência desconhecida.

kroton

9

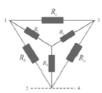


Aula 2

Equivalência estrela triângulo

Uma solução para a situação em que os resistores não estão nem em série nem em paralelo é utilizar as topologias Estrela (Y) ou Tê (T) e/ou Delta (Δ) ou PI (π), representadas pela Figura 1.5 a seguir. Os números 1, 2, 3 e 4 representam os terminais do circuito.

Figura 1.5 | Representação topológica estrela ou T e delta ou Pi, para disposições dos resistores



kroton^k

Essas topologias são equivalentes de forma que sempre é possível, a partir de uma configuração, definir a outra configuração. Essas configurações são muito utilizadas em redes trifásicas, filtros elétricos e circuitos adaptadores. A conversão de uma topologia para outra é feita basicamente, superpondo uma topologia sobre a outra, como mostra a Figura 1.6:

Figura 1.6 | Representação esquemática da sobreposição das topologias triângulo e delta

Fonte: elaborada pelo autor.

11

Aula 2

Os resistores (R_a,R_b,R_c) representam a topologia delta e os resistores R_1,R_2,R_3 representam a topologia estrela. A conversão de delta para estrela é realizada por meio da seguinte regra: cada resistor da topologia estrela é resultado do produto dos resistores, nos ramos adjacentes da topologia delta, divididos pela soma dos três resistores também da topologia delta. Por exemplo, vamos obter a expressão matemática para o resistor R_1 , considerando que conhecemos os resistores (R_a,R_b,R_c) da topologia delta. Aplicando a regra, observamos que os resistores adjacentes ao resistor R_1 são os resistores R_a e R_b , e a soma dos resistores é simplesmente a soma algébrica dos três resistores (R_a,R_b,R_c) . A equação para esse resistor é R_1 = $\frac{R_bR_c}{R_a+R_b+R_c}$. Seguindo essa regra, é possível obter as

kroton

resistor é $R_1 = \frac{R_b R_c}{R_a + R_b + R_c}$. Seguindo essa regra, é possível obter as

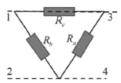
demais expressões para os resistores R_2 e R_3 . A conversão de estrela para delta é realizada por meio da seguinte regra: cada resistor da topologia delta é resultado da soma de todos os produtos possíveis da topologia estrela, tomados dois a dois, divido pelo resistor oposto na topologia estrela. Por exemplo, vamos obter a expressão matemática para o resistor R_a , considerando que conhecemos os resistores (R_1,R_2,R_3) da topologia estrela. Aplicando a regra, observamos que existem três produtos tomados dois a dois e o resistor oposto

ao R_a é o R_2 . Assim, $R_a=\frac{R_1R_2+R_1R_3+R_2R_3}{R_2}$. Seguindo essa regra,

é possível obter as demais expressões para os resistores $R_b \in R_c$ (SADIKU; ALEXSANDER, 2009; DORF; SVOBODA, 2014).

kroton

13



Aula 2

Considere a Figura 1.7, que é uma representação esquemática circuito delta. Obtenha a topologia estrela equivalente em função dos resistores da topologia delta. Considere que $R_a=15~\Omega$, $R_b=10~\Omega$ e $R_c=25~\Omega$.

Figura 1.7 | Representação esquemática da topologia delta

Fonte: elaborada pelo autor.

kroton

$$R_{1} = \frac{R_{b}R_{c}}{R_{a} + R_{b} + R_{c}} = \frac{10 \times 25}{50} = \frac{250}{50} = 5,0 \Omega;$$

$$R_{2} = \frac{R_{a}R_{c}}{R_{a} + R_{b} + R_{c}} = \frac{15 \times 25}{50} = 7,5 \Omega.$$

$$R_{3} = \frac{R_{b}R_{a}}{R_{a} + R_{b} + R_{c}} = \frac{10 \times 15}{50} = 3,0 \Omega$$

Portanto, a topologia estrela equivalente é mostrada na Figura 1.8, com os seguintes valores para os resistores: $R_1=5,0~\Omega,~R_2=7,5~\Omega$ e $R_3=3,0~\Omega.$

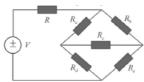
Figura 1.8 | Representação esquemática da topologia estrela

Fonte: elaborada pelo autor

15

15

Aula 2


Sem medo de errar

Durante nossos estudos, vimos que, nos circuitos em que os resistores estão em série ou em paralelo, o uso das leis de Kirchhoff são suficientes. Porém, o circuito a ser considerado tem uma particularidade, pois existe resistor que não está nem em série nem em paralelo. Nesse caso, Jeremias, devemos utilizar a equivalência triângulo estrela equivalente para encontrar a resistência equivalente desse circuito. Basicamente, o que devemos fazer é considerar os resistores R_a , R_b e R_c , da Figura 1.15, como um equivalente triângulo.

kroton

Figura 1.15 | Representação esquemática da ponte de Wheatstone com um resistor no lugar do galvanômetro

Fonte: elaborada pelo autor.

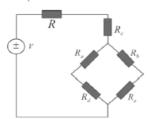
Utilizando o princípio da superposição, devemos construir o circuito estrela equivalente. A Figura 1.16 representa a mudança do delta para o equivalente. Aplicando as condições,

$$R_1 = (R_a R_c)/(R_a + R_b + R_c)$$
 , $R_2 = (R_b R_c)/(R_a + R_b + R_c)$ e $R_3 = (R_a R_a)/(R_a + R_b + R_c)$

Figura 1.16 | Representação esquemática da conversão delta estrela

kroton

17


17

Aula 2

A nova topologia é:

Figura 1.17 | Representação esquemática da conversão delta estrela

Fonte: elaborada pelo autor

kroton

Com essa alteração, os resistores R_a e R_d , assim como R_b e R_e , estão em série entre si. O resistor equivalente desses resistores está em série com os resistores R_c e R, portanto, a lei de Kirchhoff é completamente aplicável. Assim, "eliminamos" o resistor R_4 do circuito. Por meio dessa alteração, o circuito passa a ter uma topologia série/paralelo convencional. Dessa forma, poderemos substituir a ponte de Wheatstone modificada por um resistor equivalente. Trocamos, então, um circuito com seis resistores e uma fonte de tensão por um circuito com um resistor e uma fonte de tensão.

kroton

19

19

Aula 2

Exercícios

kroton kroton

pitágoras **ÜÑIASSELVI** Unic