

Bibliografia Básica

 DORF, Richard C.; SVOBODA, James A. Introdução aos Circuitos Elétricos. 8ª edição. Rio de Janeiro: LTC- Livros Tecnicos e Científicos, 2012.

Na nossa biblioteca: 19 exemplares- 621.3815 D749i 8.ed.

Análise Básica de Circuitos para Engenharia, 10ª edição IRWIN, J. David. Análise Básica de Circuitos para Engenharia. 10ªed. São Paulo: LTC, 2013.

Na biblioteca ebook:

http://187.86.214.60/pergamum/biblioteca/index.php?id=ANH AN

Indutor (Pág. 210- Análise Básica de Circuitos em Engenharia- Irwin)

 Indutância: Induzir material. É a propriedade de induzir d.d.p.

1. Campo Distribuído;

r(r)

2. Campo concentrado;

3. Com maior intensidade.

Aula 4

Indutor

- É um componente de circuito que consiste em um fio condutor usualmente com a forma de uma bobina. São classificados pelo tipo de núcleo ao qual são bobinados.
- Por exemplo, o material do núcleo pode ser o ar ou qualquer material não magnético, ferro ou ferrita.
- Os indutores feitos com ar ou materiais não magnéticos são amplamente utilizados em circuitos de rádios, televisores e filtros.
- Os indutores com núcleo de ferro são utilizados em fontes de potência elétrica e filtros. Os com ferrita em altas frequências.

Indutor

- Do ponto de vista histórico, os desenvolvimentos que levaram ao modelo matemático empregado para o indutor serão apresentados a seguir.
- É mostrado que um condutor que produz corrente poderia produzir um campo magnético. Posteriormente, foi mostrado que o campo magnético e a corrente que o produzia estavam linearmente relacionados.
- Finalmente, foi mostrado que a variação de um campo magnético produzia ume tensão que era proporcional à taxa de variação com o tempo da corrente que o produziu:

$$v(t) = L. \frac{di(t)}{dt}$$

krol

Aula 4

Indutor

 Indutância: Induzir material. É a propriedade de induzir d.d.p.
 TABELA 6.3 Resistência por pé dos condutores de cobre maciços

[L]- Henry

M, mH, uH

Lei de Faraday $\mathbf{v} = N.\frac{d\phi}{dt}$

$$\mathbf{v} = L.\frac{di}{dt}$$

AWG Nº	Diâmetro (In)	mΩ/ft
12	0,0808	1,59
14	0,0641	2,54
16	0,0508	4.06
18	0,0400	6,50
20	0,0320	10,4
22	0,0253	16,5
24	0,0201	26,2
26	0,0159	41,6
28	0,0126	66,2
30	0,0100	105
32	0,0080	167
34	0,0063	267
36	0,0049	428
38	0,0039	684
40	0,0031	1094

kroton[⊀]

Indutor

• Tensão no Indutor:

$$v(t) = L \frac{di(t)}{dt}$$

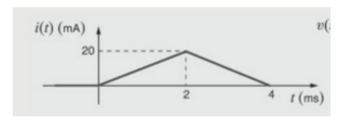
· Corrente no Indutor:

$$\mathbf{i}(t) = \frac{1}{L} \int v(t) dt + i(0)$$

• Energia Armazenada:

Warm.=
$$\int p(t)dt=\int v(t)i(t)dt=\int Lrac{di(t)}{dt}(it)dt=$$
 Warm.= $rac{1}{2}$ LI 2

kroton



Aula 4

Indutor

• Exemplo:

A corrente de um indutor de 10mH possui a seguinte forma de onda:

Determine a forma de onda de tensão entre os terminais desse indutor.

Indutor

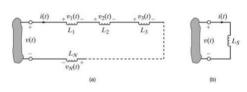
· Resposta:

kroton

Aula 4

Exemplo:

A corrente em um indutor de 2mH pode ser expressa por i(t)=2 sen 377t (A).


Determine a tensão entre os terminais desse indutor e a energia nele armazenada.

Resposta: $v(t) = 1,508 \cos 377t (V)$ Warm.= $4x10^{-3} \sin^2 377t (J)$

kroton[⊀]

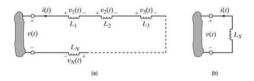
Associação de Indutores

INDUTORES EM SÉRIE Se N indutores são conectados em série, a indutância equivalente da combinação pode ser determinada como descrito a seguir. Com base na Fig. 6.17a e utilizando a LKT, pode-se escrever

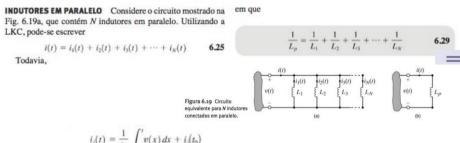
$$v(t) = v_1(t) + v_2(t) + v_3(t) + \cdots + v_N(t)$$
 6.21 e. portanto.

$$v(t) = L_1 \frac{di(t)}{dt} + L_2 \frac{di(t)}{dt} + L_3 \frac{di(t)}{dt} + \dots + L_N \frac{di(t)}{dt}$$

$$= \left(\sum_{i=1}^{N} L_i \right) \frac{di(t)}{dt}$$


$$= L_3 \frac{di(t)}{t}$$
6.23

Aula 4


Associação de Indutores

$$L_S = \sum_{i=1}^{N} L_i = L_1 + L_2 + \cdots + L_N$$

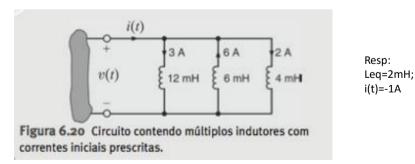
Associação de Indutores

$$i_j(t) = \frac{1}{L_j} \int_{t_0}^t v(x) dx + i_j(t_0)$$

A substituição dessa expressão na Eq. (6.25) fornece

$$i(t) = \left(\sum_{j=1}^{N} \frac{1}{L_{j}}\right) \int_{t_{0}}^{t} v(x) dx + \sum_{j=1}^{N} i_{j}(t_{0})$$

$$= \frac{1}{L_{p}} \int_{t_{0}}^{t} v(x) dx + i(t_{0})$$


13

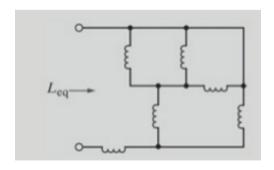
Aula 4

Exercícios:

1. Determine a indutância equivalente e corrente inicial para o circuito:

Exercícios:

2. Determinar v em cada indutor.



Aula 4

Exercícios:

3. Determinar o indutância equivalente da rede mostrada.

Resp: Leq=9,43mH

