

Bibliografia Básica

1. CALLISTER, Jr; W. D. Fundamentos da Ciência e Engenharia dos Materiais. 2ª edição. Rio de Janeiro: LTC, 2006. (19 exemplares)

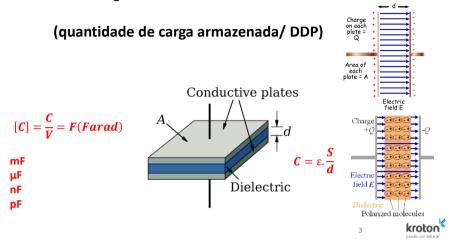
Pesquisa Biblioteca:

http://187.86.214.60/pergamum/biblioteca/index.php?id=ANHAN

2. Fundamentos da ciência e engenharia de materiais - 2 / 2006 - (E-book.)

CALLISTER JR., William D. Fundamentos da ciência e engenharia de materiais. 2. Rio de Janeiro LTC 2006 1 recurso online ISBN 978-85-216-1930-7.

MARTINO, J. A.; PAVANELLO, M. A.; VERDONCK,
 P.B. Caracterização Elétrica de Tecnologia e
 Dispositivos MOS. 5ª ed. São Paulo: Thomson, 2003,


V. 1. (Acervo pessoal- professor)

Capacitor ou Condensador

• Oferece capacitância/ ou "capacidade": é a propriedade de armazenar cargas elétricas.

Aula 3

Capacitor ou Condensador

 Tipos de Capacitor: tântalo, vanádio, plástico, papel, eletrolítico (aguentam menor tensão), base de óleo (utilizado em bancos de capacitores e também na eletrotécnica para corrigir fator de potência.

2

Capacitor ou Condensador

• Grandezas que devo saber na hora da compra: C e Vmáx.

A partir da relação $C = \frac{Q}{V}$, encontre a corrente no capacitor e a tensão.

Resposta: $i(t) = C \cdot \frac{dv(t)}{dt}$

$$v(t) = \frac{1}{C} \int i(t)dt + v(0)$$

Aula 3

Capacitor ou Condensador

· Energia Armazenada

A partir da relação $i(t)=C.\frac{dv(t)}{dt}$, encontre a energia armazenada no capacitor:

$$\mathbf{w} = \int p. dt$$

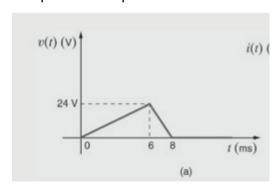
Solução:
$$\mathbf{w} = \frac{Q^2}{2C}$$

Capacitor ou Condensador

• Exemplo 1:

Se a carga acumulada em dois condutores paralelos carregados de 12V é de 600pC, qual é a capacitância dos condutores paralelos?

Resposta: 50 pF

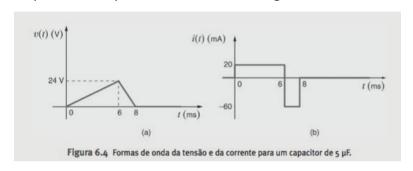


Aula 3

Capacitor ou Condensador

• Exemplo 2:

Um capacitor de 5 µF inicialmente descarregado é submetido à:


Determine i (t)

Capacitor ou Condensador

• Exemplo 2:

Um capacitor de 5 μ F inicialmente descarregado é submetido à:

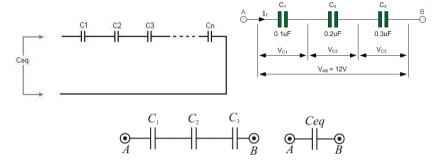
kroton

Aula 3

Capacitor ou Condensador

• Exemplo:

Para o mesmo exemplo, determinar W e Q, em t= 6ms.

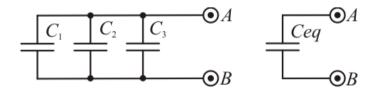

Resposta: W=1440 µJ.

kroton[⊀]

Associação de Capacitores

• Série:

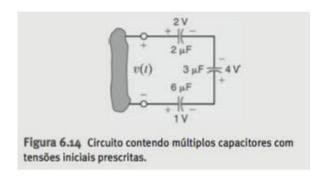
Lei de Kirchoff das Tensões: v1+v2+v3+...+vn= v



Aula 3

Associação de Capacitores

• Paralelo:


Lei de Kirchoff das Correntes i= i1+i2+i3+...+in

kroton kroton

Associação de Capacitores

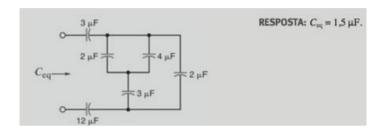
- Exercícios:
- 1. Encontre o Ceq e W_{arm}. para os circuitos abaixo:

Resposta: 1uF e 31uJ

13

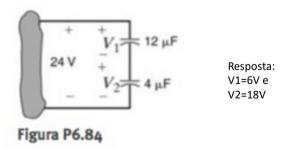
Aula 3

Associação de Capacitores


- Exercícios:
- 2. Encontre o valor de C1 para o circuito abaixo:

Associação de Capacitores

- Exercícios:
- 3. Encontre o Ceq o circuito abaixo:



Aula 3

Associação de Capacitores

- Exercícios:
- 4. Encontre V1 e V2 para o circuito abaixo:

