

Critérios de Avaliação

1. Avaliações (ambiente online):

B1 – peso 4- 1º bimestre:

- 3 pontos (AVA)
- 7 pontos (Avaliação Oficial Presencial 02/10/2018***).

B2 - peso 6 - 29 bimestre:

- 3 pontos (Presencial: Listas de Exercícios- aula/ casa)
- 7 pontos (Avaliação Oficial Institucional 04/12/2018***).

SUB ou Avaliação de 2ª Chamada - P1 ou P2

• 7 pontos (Aval. Oficial Inst. ou Presencial para 11/12/2018***).

Exame (Apenas para M>=4,0)

- 10 pontos (Avaliação Oficial Institucional 18/12/2018***).
- ***Previsão!!!

kroton

Cálculo Numérico

Bibliografia Básica Padrão (Definitivo)

1. SANTOS, João C. **Cálculo Numérico.** AVA. Ambiente Virtual de Aprendizagem.

João Carlos dos Santos Gabriela Faria Barcelos Gibim

2. RUGGIERO, Márcia A. G. **Cálculo Numérico: Aspectos Teóricos e Computacionais.** 2ª edição. São Paulo: Pearson- Prentice Hall, 2012.
Na nossa biblioteca: 30 exemplares- 519.4 R871c

kroton

Aula 4

Aritmética de ponto flutuante

Diálogo aberto

Na seção anterior, vimos que há um método padrão para gerar um número numa base "b" qualquer, mas concentramos nossos estudos nos números dos sistemas decimal e binário.

Nesta seção, você irá aprender sobre aritmética de ponto flutuante. Iremos estudar sobre a representação dos números num sistema computacional e como esta é limitada pela capacidade da máquina, motivo da utilização do truncamento ou arredondamento dos dados.

kroton

Lembre-se

Alguns desastres que ocorreram são atribuídos a uma equivocada computação numérica, como o fracasso do míssil Patriot, em Dharan, Arábia Saudita, em 25 de fevereiro de 1991. Esse incidente, que resultou em 28 mortes, foi atribuído à má manipulação de erros de arredondamento. Outro caso foi a explosão do foguete Ariane 5, logo após a decolagem em sua viagem inaugural a partir da Guiana Francesa, em 4 de junho de 1996. Esse desastre acabou por ser a consequência de um estouro de memória (overflow). Os textos completos sobre os casos podem ser lidos em http://www.ima.umn.edu/~arnold/disasters. Acesso em: 13 jul. 2015.

Aula 4

Sistemas de números no computador

A quantidade de números reais existentes é infinita, e entre qualquer faixa de números temos outros infinitos números – podemos representar números infinitamente pequenos. Os computadores, por sua vez, são limitados, ou seja, só podem representar números de tamanho finito, elementos finitos, células e registradores de tamanho finito. O fato de os computadores só representarem números de tamanho finito acarreta um problema de precisão, e podem ocorrer erros tanto para indicar números, quanto para obter o resultado de operações aritméticas. É por problemas como esse que existem o *overflow* e o *underflow*. Para melhor compreensão, suponha que um processador tenha capacidade para representar valores binários de 32 bits e que efetue uma multiplicação cujo resultado retorne um número que ocupe mais espaço que o disponível. Essa ocorrência é conhecida como estouro da representação ou *overflow*.

kroton[⊀]

Vocabulário

Underflow: quando ocorre um resultado com valor abaixo do menor valor representável por uma específica quantidade de bits disponível numa dada máquina.

Overflow: é o estouro da representação, isto é, quando há a necessidade de armazenar uma quantidade maior de bits do que o espaço representável disponibilizado pelo sistema de computação.

Bit: (simplificação para dígito binário, "Binary digit" em inglês) é a menor unidade de informação que pode ser armazenada ou transmitida e que pode assumir somente dois valores: 0 ou 1, verdadeiro ou falso e assim por diante.

Aula 4

Num sistema computacional, os valores reais são armazenados em notação científica, que é aquela que permite escrever com menos algarismos números muito pequenos (com muitos zeros depois da vírgula) ou números muito grandes. Considere os exemplos a seguir. O número 0,0000005 é muito pequeno, mas possui muitos dígitos. Em notação científica, é representado por 5×10^{-7} e, em computação, por 5E-7, sendo que E é o indicador de que há o expoente -7. Observe que essa notação permite que o número seja "representado" corretamente com uma quantidade menor de algarismos (dígitos). A notação científica, como é conhecida em matemática, é chamada em computação de representação em ponto flutuante. Agora note que o número 5531222341112123 pode ser representado por 5,53×10¹⁵ ou por 5,53E15 em ponto flutuante. Vamos aprender agora como os números são representados num computador.

kroton

Dado um número inteiro n ≠ 0, ele possui a seguinte representação:

$$n \, = \, \pm (n_{-k} n_{-k+1.....} n_{-1} n_{0}) \, = \, \pm (n_{0} b^{0} + n_{-1} b^{1} + + n_{-k} b^{k}),$$

em que os n_i , i=0,-1, ..., -k são inteiros satisfazendo $0 \le n_i < be \ n_\perp \ne 0$.

Exemplificando

Como o número 1885 é representado na base b=10 e armazenado?

$$1885 = 5 \times 10^{0} + 8 \times 10^{1} + 8 \times 10^{2} + 1 \times 10^{3}$$

E é armazenado como n_{.3}n_{.2}n_{.1}n₀

Aula 4

Representação de um número real

Você sabia que a representação de um número real no computador pode ser feita de duas maneiras?

I- Uma delas é a representação em ponto fixo: esse sistema foi usado no passado em muitos computadores. Assim, dado um número real, $x \neq 0$, ele será representado em ponto fixo por:

$$X = \pm \sum_{i=k}^{n} X_i b^{-i},$$

em que k e n são inteiros satisfazendo k<n e, usualmente, k \le 0 e n>0 e os x, são inteiros satisfazendo 0 \le x, <b.

10

Exemplificando

O número 2886,16 é representado na base b=10 por:

$$2886,15 = \sum_{i=-3}^{2} x_i b^{-i}$$

$$= 2 \times 10^{3} + 8 \times 10^{2} + 8 \times 10^{1} + 6 \times 10^{0} + 1 \times 10^{-1} + 5 \times 10^{-2}$$

$$= 2 \times 1000 + 8 \times 100 + 8 \times 10 + 6 \times 1 + 1 \times 0.1 + 5 \times 0.01$$

Assim é armazenado como $x_{3}x_{2}x_{1}x_{0}$, $x_{1}x_{2}$

A representação em ponto flutuante (poderia ser chamada, no Brasil, de vírgula flutuante, pois usamos a vírgula para separar a parte inteira da fracionária) é universalmente utilizada nos dias atuais.

kroton kroton

